NASA CONTRACTOR REPORT NASA CR-54421

NASA CR-54421

VAPOR-FILLED THERMIONIC CONVERTERS

PREPARED BY K. G. HERNQVIST (Project Scientist),
3. R. FENDLEY, JR. AND J. D. LEVINE

APPROVED BY P. RAPPAPORT, Project Supervisor

FINAL REPORT

Prepared under Contract No. NAS 3-4173

RADIO CORPORATION OF AMERICA -
RCA LABORATORIES

PRINCETON, NEW JERSEY

for

NATIONAL AERONAUTICS & SPACE ADMINISTRATION - WASHINGTON, D. C. - APRIL 196°
LEWIS RESEARCH CENTER



FOREWORD

This report includes theoretical and experimental results from studies of cesium surface
adsorption and cesium plasma phenomena. A comprehensive Mid-Point Report (NASA CR-54194)
covering work done under this contract was issued in September 1964. The most significant
parts of that report have been published in the Proceedings of the Thermionic Conversion
Speciralist Conference, Cleveland, Ohio, October 1964. Only summaries of that work are in-
cluded in this Final Report.

We wish to acknowledge the encouragement and support of Mr. Harold Nastelin and
Mr. Herman Schwartz of the NASA Lewis Research Center.
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ABSTRACT
QGé‘QB

Theoretical studies necessary for interpreting experimental conductivity data of cesium
on insulators have been completed. Starting from the Schradinger equation for a single adsorbed
cesium atom, wave functions and their propertics have been compiled. This information and
Kopineck’s integrals are used to compute the tunneling (resonance) energy between two adsorbed
cesium atoms which is then generalized to an entire array of adsotbed cestum atoms. One of the
most important consequences of the theory is that, to a first approximation, conductivity should
be proportional to the cesium pressure squared. The experimental data verify this and also
verify other anticipated dependences on dielectric constant and surface contamination. The
cesium adsorption heat on clean alumina and Pyrex surfaces is calculated to be 0.85 eV, and
the large configurational entropy rerm, \s/k ~ (. seems to indicate a long-range order ir agree-
ment with certain low-cnergy electron ditfraction (LEED) studies. Data obtained under contam-
inated conditions have shown that adsorbed hydrogen causes the conductivity to increase fol-
lowing a 2/3-power law. while leaving the cesium adsorption heat invariant.

Various measuremenss of arc drop ard anode work function are reported. Arc drop 1s fourd
to be nearly 0.5 volt for cathode temperature in the range 1300 to 1500°K and current density of
6 to 12 A/cm?. Anode work function wi.h a high cesium coverage has been found to be cqual to
or greater than 1.93 V.

A method is described for measuring the work function of metal surfaces coated with ad-
sorbed cesium or with a combination of cesium and oxygen.

An analysis of the effects of reverse currents in thermionic converters is presented. It

1s shown that reverse currents cause a coittribution to the arc drop and also impose limiting con-

ditions on the useful range of anode work functions.
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INTRODUCTION

The most useful and well-established form of thermionic converter is the cesium vapor
diode operated in the arc mode. Here cesium is used both in establishing desirable electrode
surface properties and for space charge nzutralization. It was the objective of the work done
under this contract to improve the fundamental understanding of both of these functions and thus

make it possible to more accurately define device limitations and to establish promising new
directions for device improvements.

In the area of surface studies, the stated objective was to understand the properties of
cesium adsorbed on insulator surfaces. An understanding of this basic system has been completed

and is expected to be helpful in Jevising new elecrrode surface conditioning m=thods of interest
for thermionic converters.

The plasma studies described in this report had as objective the establishment of factors

affecting the arc drop. These stndies have resulted in an accurate determination of the arc drop
and a correlation with theory.



.

~ stand this unique system of cesium adsorptwn on iusulators.

I. ADSORPTION OF CE3iUM ON INSULATORS
- ' by

- . Jules D. Levine

A. INTRODUCTION TO CESIUM ADSORPTION ON INSULATORS

’ Emitter and collecter surfaces in thermionic energy converters are compiex Secause of
adsorbed cesium. adsorbed additive gases. and adsorbed residual gases. At present. there exists -
_no expertmentali cr thecretical study capabic of {ully fnterpreting these complexities. The fre-
“quently ‘eported experimental studies of work funcrion changes with various cesium and additive
-pressures do not reveal the lateral interatomic forces between the cesium and the additive gas.
Present theoretical analyses of interadsorbate reactions are not based cn sclutinas of Schrodiager's
equ'a,tion,’a_nd critéria fo:r obtaining very low work i’&nction surfaces are impesfectiy understend.

-~ _ “Foroneclass of adsorption systems, however, there does exist a 1a:ge quantity of easily
- -interpreted expenmental data and a firm (heoreucal foundation formulated in quantum mechanical
_teqms. This class consists of adsoried cesium pius an additive on an insulator substrate. Ik is

- possible in this unique system to proceed logxcallv from {a) the one-electron Schrodinge: eql.a( on,
10 (b) the two-body ‘interaction, to (c) the conductivity refarions, dipole moments, and equauon: of
state. Effects of the additive gas can be anah'zed Comn' risons of itheorvy with experiment are
excellenr. - -

3

As. s(ated in the Con(ract Ob)euxve the purpose of the report to follow is to fully under-

,..xpenmemal studles' -3 have previously shown that there is a liule chemxcal reac.ion
_between cestum .and insulators, the data are reproducible, and a great variety of propesties can
be measured such as eiectrical conductivity, thermoelectric effect, dnffusnon and kinetics of
adsorption. Finally, because the insulator substrate is electrically irert, electrical effects
cdused by adsorbed cesium can easily be dlsungulshed from the bulk substrate and observed
over many orders in mabr.uude.

Theoretical stwdies to be described here represent an attenipt to unify much of this ex-
perimental data into one coherent fabric. The approach is fundamental in the sense thart there 1s
a logical development from the general quantum theory of <urface donors to the equations for '
electncal conductivity, . - <

To be specific, in Section I-B the nodal wave functions of isolated donor atoms are ex-
plicitly derived. and. in Section I-C the details of donor wave function distortions are calculated
by a variational tech'uque for an arbitrary surface asymmetry potential. Only fundamental con-
stapts — Planck’s constant, electron mass, electronic charge, and dielectric constant — enter -
into the relationships. The ground state of a surface donor, like cesium on an insulator, consists
of one lobe of a 2p wave funcuon penetrating into the insulator. The formalism is Stmple and
clegant. -

-

In Section I-D the interactions between surface donors are consid=red. Explicit calcula-
tions of the quantyum mechanical resonance integral between two surface donors are made, which
lead to a theoretical expression for electrical conductivity. The conductivity mechanism consists
of electron tunneling with phonon losses due to vibrational coupling of the donor to the lattice.

9



'B. NODAL HYDROGENIC WAVE FUNCTIONS

The donor proner encrgy 15 explicitdy caiculated. Calealations show that conductivity should
be proporitenal. in the first aprroximation. to the costum coverage squaresd.

In Scction I-E. the wquation of state is computed which relates coverage 0 surface tem-
perature and vapor bath temperature. At the low coverages of interest. the coverage is theereti-
cally proportional o the cesium vapor pressure: aiso. the conducuvity should theoreuically be
proportional o the vapor pressvre square.d. Two unknowns appear i1a the cquation oi state: the
adsorption fizat and the coniipuratonal eniropy change.

Section I-F 1s o summan of the experimental data obtained and Scction i-G ic a compariso:
of these data with theory. Conductvity is found to be proportional o vapor pressury squared in
exact 1greement with theorv. The adsorption hea: and entropy change are unambiguoasly cemputed
from th> data. Theoretical dependences on dicleciric constant :nd contaminaat gases indicaie
iong-rar.ge ordering of cesium Jonors. Finally. Section I-H reviews the mamn conclusions of this
ettort.

The theoreucal undersianding of cesium adsorption processues on insualators has gradually
evolved from more primitive concepts which were discarded as more experimental and theorstical
evidence was accumulated. One early conception of surface conduction through the substrate -
conduction band had 10 be discarded because. experimentaliy, the conduction magritudes on glass
and sapphire substrates were similar even though glass exhibits a poorly defined band stuctre.
Another concestion of adsorbed cesium diatemic molecuies had to be discarded because. theoreti-
czdlyv. cesium atom interactions vield a pressure squared dependence on conductivizy anl. experi-
mentally, transient desorption experiments indicate adsorbed cesium atoms. Finaliv. a third
conception of impurity band cenduction due to cesium-cesium surface band formacon had to be
discarded because theoretical calculations showed that the interactions are toc weak to form such
a band.

The present concept of tunneling conductivity between adsorbed cesium aroms net only
has a good thecretical foundation but also agrees well with experimental daia taken up to the
present time.

The novel and successful theoretical tools developed here could be ¢xzended next to the
more complex system of cesium plus additive adsorbed on a metallic surfacc. The extra complexity
largely arises because Wannier tunctions. which are stationary wave packets in metallic bond
theory, must be used. Such a fandamental srudy follows natura'ly from the present effort and would
be especially important. considering the current trend of intreducing addicives into thermionic
energy converters, ' ’

A donor atom located on a semiconductor surface will have properties considerably dif-
ferent from a donor atom located in the semiconductor bulk. Three examples of surface donors
would be: a phosphorus atom located on a silicon surface, a sodiur: atom on a sodium chloride
surface, and a cesium atom on a sapphire surface. An u standing of surface donor properties
is important to adsorption physics, to catalysis, to thin~1 1 formation, and to certain electronic
devices dominated by surface effects. Also, the quantum mcchanical properties associated with
the chosen donor potential are simple and elcgant.

A surface donor atom is considered to be an ion core plus . valence electron moving about
it in an atomic orbital, in accordance with quantum mechanics. Such a coadition will prevail at



low temperatures and is the condition of interest. Ac high temperatares the donor may become
tonized whereby the valence electron moves in the ¢rvstal conduction band. and FPoisson’s
equation and Ferni-Dirac statistics must be used. We consider only the clecrronic structure of
an isolated surface donor atom before tonization.

Many workers?*® have attempted to calculate surface wave functions and energy levels by
considering the adsorbate and substrate as a giant macromolecuie. Because the periodicity of the
crystal lattice 1s disturbed at the surface by the adsorbed species. new (Tamm-like) adsorption
states appear. which can be calculated from quantum mechanics. The calculations are extremely
complicated s> that physical insight is frequently lost in the mathematics. In addition, grossly
simplifying assumptions must be :voked so that energy calculations are at most gualitative.

Weisz’ has attempted to calculate the dor.or ionization energy E, by using simple adsoip-
tion ideas. He considers E. to be fixed by the difference of the ionizatior potential I of the free
vapor atom and the werk function &, ot the crystal. According to this idea. if | - S then a metallic
adsorbate would not be spomaneousl\ 1omzed to form a conduction electron. But a phosphorus atom
{1 = 10.9 eV) located inside a germanium crystal (6, = 4.5€V) is experimentally known tc be easily
1omzed (E; = 0.01 ¢V) even though I > &,. Thus the (l - &) criteria and the “boundary layer
theory of adsorpuon " on which it is based® are open to serious question,

The approach taken in the discus:ion to follow is different from the two approaches men- .
tioned above. Essentially, it is an extension of the established quantum mechanical theory of a
donor atom locatéd within a semiconductor.9"'? In this theory, the semiconductor is assumed
electrically inert except for providing a dielectric constant «. Such an assumption allows calcu-
lation of hydrogenic wave functions and energy levels which agree with experiment. For example,

a simple theoretical calculation of E; for silicon based on « = 12.0 and effcctive electron mass
equal to the free electron mass nelds E; - (hydrogen ionization energy)/«> or 0.094 eV. For
comparison, E. for Li. P, As. and Sb donors in silicen is experimentally found to be 0.041 eV * 15%.
A more reahsuc theoretical calculation,” taking into account the separatély measured effective
~mass tensor, yields 0.029 eV. Reasons for the discrepancy-of 0.012 eV between this refined value
and experiment are attributed to the effect of the donor ion core. Similar consideraions hold for
donors in germanium, This theory has also predicted wave functions, excited state energies, and

the effect of strains. electric and magnetic fields in good agreement with experiment. Methods of
extending these ideas to a donor located at the surface of.a semiconductor crystal are described
below. A similar analysis also applies to surface acceptors.

1. Potential Function

Consider a donor atom located on the surface of a dielectric crystal, The potential function
V{(r,0,d) is chosen tc be

V(r,0,¢) = - e?/kr inside the dielectric 7 (1)

V(r.08,¢) = + = cutside the dielectric ) ('b)

which is shown by the solid line in Fig. 1. Here e is the unit electronic charge and « is the crys-
tal dielectric constant, taken for simplicity to be uniform up to the crystal boundary, The coordi-
nates r, 0, and ¢ are the usual spherical coordinates arranged so that the z-axis (z = rcos 6) points
in the direction perpendicular to the surface. In particular the dielectric half-space is represented
by z >0, or 0 < 6 < n/2, and the vacuum half-space is represented by z-0,0i7/2 <8 n The
potential is arbitrarily referred to zero when the valence electron is in the crystal bulk conduction

band (r » ~, 8 < 7/2). .

BEN



The chosen potential i in tact an excelleat approximation to that of a real surface donor.
Qualitatively speaking. the valence clectron i, epcrgetically most stable within the dielectric half-
space becausc ot the high clectron affintty A there. Quantitative statements can be made by refer-
ring to a more accurate suiside potential. X - e r. shewn in Fig. 1 by the dashed line. The pro-

‘posed infinite magnitude of Vin Eq. (1b) seems justified since Nt~ 1 eV) is frequently 10-1G0

times the surface donor 1onrization energy E. as will be shown later. The proposed step potential
of \" at the surface 2 O (et ¥ - 7 2) requires more justification. Consider points A and B in Fig. 1.

'4

ELECTRON IN VACUUM
TN
f \
! \
| \
X \
| \
; |
i |
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|
1
€, |

BOUND ELECTRON

-

Fig. 1. Potential of an electron as a function of position. A
dielectric crystal occupies the half space z >0 and a
positive dovior ion is located at the surface z = 0. In
the approximation discussed in the text, the solid line
is the effective potential.

Point A is located at the conduction band le\el where V = 0 and z, = e?/X. Point B is located at
the lowest donor level V--E, and zp =€ 2/ (X +E)) J- The difference between z, and zg is calcu-
lated to be 5= e? E,/\2. Typlcallv for E;=0.1eV and X =1¢V, one obtains &= 0. 1x13.6/11=1 A,
which is less than one lattice constant. In summary, when the potenual function varies from
V=-E toV =0, the potennal barrier at the lefrcof Fig. 1 varies by approximately 1 A while the
barrier at the right varies from approximarely 10 A to ~. Thus, the step change in the potential

function at the surface seems justified for calculating surface donor energies, especially if
Ei/X 0.1,

2. Wave Functions

The Schradinger equation for the wave function U(r,6,¢) and the donor energy E of a single
valence electron is

h2y?

8772;1*

U(r,8,6) + [E - V(r,0,6)1 (r,0,¢) = 0 (2)

where h is Planck’s constant and 1.* is the effective electron mass in the nontensor approximation.



The allowed wave functions satisfying Egs. (1) and (2) are simply those hydrogenic wave
functions which have z planar node at the crvstal boundary, ¢ - #/2, To be specific, the wave
functions are listed below with Pauling’s normalizaiion!?:
Outside the dielectric

ulr,6.6) -0 (3)

Instde the dieleciric

U (1.6,8) R (N O, (6 & (&) (4)
n-.m n . 1m
3 . b2 .
. 2N @-4-1 |7 pr2 ot 24en
R —j e L A ()
n{(f) '(Kﬂaz) 20[(“*’6)‘13‘ P n- A P) \ )
Q4-DE-m ] el
] T 24 - {7 - ml)f “.:n(
@){m(e) V2 [ 3 - im J P (cos ) (6)
® (&)= —L_ '™® )
\ 2w
where p and a* aie deticed as
- ' 2
p=—=L_ . and a* = __h? = -(8)
K0 ao i ~ ﬂ*e

. and the functions Lj%%l (p) and P!E“ (cos ) are the associated Laguerre polynomials and the

associated Legendre polynomials, respectively. From the known properties of P"m! (cos 0) it

follows that the requirement of a planar node at 6 = #/2 is exactly equivalent to a '‘surface
selection rule'":

(£ + m) = odd (9

Provided this rule is obeyed, the total wave function, equal to the sum of Eqs. (3) and (4). is
continuous at the boundary, 6 = n/2, and is identically zero there. A continuity in the slopes of
Eqgs. (3) and (4) at the boi ndary is not required because of the infinite potential wall,13



Six consequences of the restriction to half-space and the surtace selection rule, © - m  odd.
are described below:

(1) All spherically symmetric s wave functions are forbidden for surface donors. In addi-
tion. the entire electronic shell with n 1 is forbidden.

(2) The ground state of a surface donor is formed from one lobe of a 2p wave functicn.
Schematic plots of all the zllowed p. d. and f wave function orbitals for surface donors are de-
picted in Fig. 2. These plots represent stationary wave functions obtained from linear combina-
tions of Eq. (4) using + m values. All of the wave functions give rise to nonzero dipole moments.

Pz : d,; dyz
nz22,l=1,m=0 | n23,1=2,m=21| n23,l=2, m=4#!

C‘z> z z
+

- + -
> —w- X .

X y
f523 — 322 fz(xz-yz) fryz
n>4.1:3 m=0 |n24,1=3,m=%2n24,1=3, m:=¢2
(4 LOBES) (4 LOBES)

b 1 b4 z
- +
X . X

Fig. 2. Schematic angular orbitals for some sutface donor wave functions.

(3) The degeneracy of a subshell of constant + is equal to . which.is smaller than the
value (24 + 1) required in the rule’s absence.

(4) The totality of electronic states with spin-up and spin-down in a complete shell of
constant n is n(n-1), which is about half the value 2n? required in the rule’s absence,

(5) Radiative dipole transitions between excited donor states are allowed. subject to the
restriction A4 = 1, corresponding to light polarized in the surface plane. Transitions for
A{: +1, m =0, corresponding to light polarized perpendicular to the surface plane, are forbidden.

(6) Since @)'{m(@) of Eq. (6) vanishes by definition in the vacuum half-plane, its normalized

amplitude must be multiplied by \'2 in the dielectric half-plane. The required normalization
factor\ 2 is explicitly included as the first factor of Eq. (6).



3. Expectation Values

Using the wave functions of Eqs. (4) to (9) the expectation values ot any parameter W can-
be calculated from the definition W~ [[[*Wdr Expectation values of many parameters — electro-
static energy. potential energy, total energy. radius, orbital angular momentum, and the z compo-
nent of angular momentum — are independent of the surface selection rule (4 + m) - odd. Hence,
these parameteis have a direct correspondence with excited states of a donor atom immersed in
the bulk of a dielectric crystal.

In particular, the energy levels E_ are given by

2 E  pu*
E -___€ . H# (10)

n 3 ) 2
2«-n Za’; K n<p

where E |, is the well-known hydrogenic 1s ionization energy, 13.6 eV. and p*/p is the ratio of
effective to free electron mass. But because n > 2 for a surface donor, the 2p grcund state energy
of a surface donor corresponds to a 2p first excited state of a bulk donor. The ionization energy
E; of a surface doror is therefore 1/4 that of a bulk donor. Typically for x = 5 and p*/p = 1, the
ionization energy is =0.1 eV as anticipated in Section I-B-2.

The mean radius T is given by

T ; :nZKag 1+ % |:1 _MJ} (11D

n- n2

which becomes r,, = Ska} for the surface donor ground state. Typically, for x = 5 and p*/p = 1,
T,y =13 A. The large radius, coupled with the fact that the wave function vcnishes at the center
of the donor 1on core, shows that the energy levels are insensitive to a local non-Coulombic
potential caused by the 1on core. Hence, for nodal wave functions on a high « crystal, the
Coulombic potential function of Section [-B-2 seems to be an adequate approximation.

The mean dipole moment M is nonzero for all surface donor states due to the surface asym-
metry. Its magnitude for the 2p ground state is

Mo, = €2, = (15/4) exa (12)

which for x = 5 and p*/p = 1 gives M,, = 43 Debyes; this is an order of magnitude greater than
dipole moments of diatomic molecules.

4. Discussion

The properties of a hydrogenlike atem placed in an electric field, a magnetic field, and a
crystalline field have been thoroughly investigated in the literature, and are here extended to a
different surface field having the pctential of Eq. (1). Because only certain surface donor wave
functions are allowed, the conseguences of a surface effect are predicted to be much more ex-
treme than the Stark or Zeeman effects which may be handled by ordinary perturbation théory.
Whether or not the family of surface wave functions predicted here is realistic is a question to be
decided by careful experimental measurements, At present, these have not been carried out for



the system of an isolated dono 1tom located on a semiconductor or an insulator ¢ -tal surtace,
Infrared spectroscopy would probably be the most informative experimental tool 11 this investi-
gation,

It is a simple matter to extend the theory presented here to related problems. An extension
to acceptor atoms located on semtconductor surfaces shows that similar surface energy levels are
obtained, being occupied by a valence band hole mnstead of an electron. An extension to diatomic
mo ccules located on semiconductor surfaces shows that axially symmetric X-bonds are forbidden.
while 7-bonds and \-bonds which have the acceptable planar node passing through the two nuclet
are alloned. An extension to a donor atom with two or more valence electrons is more coaplicatec
but would fellow the general procedure used for free atoms in the vapor state. Effects due to dono
donor interactions can also be considered. if desired, The primary interaction is a dipole-dipole
repulsion which tends to keep the adsorbate atoms equidistant, Large changes in a single atom’s
encrgy levels, due to the dipole field of neighboring atoms. are unlikelv.

The large dipole moments of surface donors predicted by the theory may bLe used in device
applications for forming low work function surfaccs or for extracting tunnel currents through a
thin insulator.

Finally, the predictions presented here can be derived in a different way by choosing the
z-axis to lie in the surface plane* and investigating the nodes of the ®(3) function of Eq. (7).
This approach allows one to determine. by inspection, that the degeneracy of an “-subshell is

-fold.

C. GRADUAL DISTORTION OF HYDROGENIC WAVE FUNCTIONS

The purpose of t..is section is to extend the ideas of the last section to a more general
problem: the calculation of hydrogenic surface wave functions for arbitrary surface asymmetry anc
arbitrary atomic potential function. Such a general treatment allows one io visualize a sitvation
where surface wave function distortions can be followed as smooth {unctions of surface asymmetr
potential.

Consequences of these distortions are surface tension. surface dipole moment, surface
free energy, and catalytic activiry. For the cesium on insulator case of particular interest, this
section displays the wave function distortions of a cesium atom ground state and all the excited
states as a dielec:ric surface is approached. More important than the numerical calculations of
this section, however. are the broad qualitative insights into surface phenomena.

1. Surface Hamiltonian and Wave Function

Consider 2n isolared positive ion located at the surface of a nonmeziallic solid or liquid.
The ion attracts a valence electron in 1 closed hydrogen-like orbit to form a surface atom. A
metallic solid does not have closed valence orbitals and must be treated differently using Wannie
functions.

Energy levels E of closed orbitals on nonmetallic solids can be computed from the one-
electron Schrodinger equation:

Hy - Ed 7 (13)

9



The Hamiltonian H pertaining to the surface is 1dealized for simplicity to be:

H-H - W (14)

0

where H | is a spherically symmetric part and W™ is an asymmetric part due to a “‘surface wall,”
idealized as a step function:

s() forz >0

w- (195)

7 ‘?Wforz <0

The coordinate z is chosen normal to the surface such that the half-plane z > 0 is inside the
material where the wall W™ vanishes. The other half-plane z < 0 lies outside the material where
the wall is nonzero .nd constant. The wall repulsive potential will be allowed to vary over the
entire range 0 « W « ~. A sketch of the potential function V associated with H is given in Fig. 3.

‘V

Fig. 3. ldealized potential function of a hydrogenic atom
located in the surface plane z = 0. W represents a
step function which is constant for negative z.

The wave function ¢ pertaining to the surface atom bonding orbital is chosen to be the
sum of a symmetric and an asymmetric part:

‘/’rcl‘/ﬂ’“cz‘//; (16)

Here ¢, is a spherically symmetric wave function (su~h as a 1s hydrogenic function) satisfying
the eigenvalue equation for W = 0

Hoyy =Ey, (17)

10



and ) ts an asymmetric nodal wave function (such as one lobe of a 2p hydrogenic function)
defined by the step function

’L’/, forz -0

v (18)
- ) 0 forz-0
This function satisfies the eigenvalue equation in the limit as W™ - =
HOW™ -+ ~) 05 = By i) (19)

The asymmetric nature of the wave function (b, completely avoids the infinite asymmetric poten-
tial W~ so that there exists a bound surface state even though W - ~. A systematic .nvestigation
of the properties of allowed wave functions ¢} has already been carried out in Section 1-B for
the case of a Coulombic H . The protability coefficients ¢ and ¢, are functions of W and will
be calculated later.

There also exist antibonding surface states defined by the wave functions v

R TR LS (20)

which by definition cannot avoid the wall repulsive potential aad represent an energy E  which
approaches infinity as W does.

The expansion of ¢y in Eq. (16) into two components represents only an approximarion to
the true wave function satisfying H. With particular choices of ¢, and ¢7, however, the hybrid
energy states are practically correct near the limiting cases of W =0 and W = «, respectively. In
the intermediate case 0 « W « «, the accuracy of the calculation can be improved by considering
more functions of the ¢, and ¢} type. The gross idealization of the wall potential W™, however,
does not justify a more elaborate expansion than that given in Eq. (16). The ground state and ull
excited states of ) will be considered in detail for a Coulombic H_ in Section [-C-3.

2. Variational Calculation

To minimize E for arbitrary W the standard variational technique is applied to Eq. (13)
yielding the set of relations:

(H11 -E) ¢ +(Hy, -~AE)c, =0 (21a)
(Hy, - AE) ¢, + (Hy, ~E) ¢, =0 (21b)

where the normalization is, with i, j = 1,2

1 fori =j
ﬁ,f,//idr.-.j 22)

lA fori #;

-

T

o

u
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and the cxpectation value of the Hamiltonian is

-

H” S / (//T (H L, W")«,’;, dT (23)
such that
W
H, -E, + %
11 T p)
HZZ = EE (24)

le =H,y) = AEI

Because of the unusual properties of the step functions ¢3 and W™, a few comments are necessary
to show how the H;; terms are derived. H,, is derived by using the eigenvalue equation for ¢,
(Eq. 17); the coefficient 1/2 of W is necessary because W™ is nonzero only over half-space. H,,
is not derived from an eigenvalue equation. Rather, H,, is merely the expectation value of H in
the state of ¢/}. The cross terms H, , and H,, are equal and are derived by operating with H on

¥y forwards and backwards, respectively, using Egs. (17) and (22). If H is allowed to operate or
Y5, the same result is obtained, but with the complication of a nonvanishing delta function contri-
bution at the origin due to the kinetic energy term V2 ¢3.

To solve for the energy E it is convenient to introduce a dimensionless energy ¢ of the
bound state E, and a dimensionless energy w of the wall W, as follows:

€ = _(I.T‘_il)_ L w= — W (25)
(E,-E,) 2AE,-E,)

Since all bound state energies E, E,, and E, are negative, the quantities (E, ~-E)) and (E-E))
are positive so that ¢ and w are positive. The secular determinant then becomes

=0 (26)

and the dimensionless binding energy is

_w+l- \/(m-—l)2 + 4A2

27
201 - AY) @

which is plotted as a function-of w in Fig. 4 for a selected particular value (Sect. I-C-3) of

A = 0.296. The figure shows that ¢ ~ w near w =0 and that ¢ » 1 as w » . Actually, for w = 2,
the dimensionless energy becomes ¢ = 0.94 so that as far a. the energy levels are concemed, an
“infinite wall’’ occurs when w > 2.

The effect of gradually “‘turning on’’ the wall potential is seen to be a gradual raising of
the energy levels of surface atom valence electrons, This effect actually occurs as evidenced by

12
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the incicase in {ree energy when a new surface is exposed. ""Dangling electron bonds’ can be
visuaiized as hydrogen-like orbitals forced to occupy high energy states due to the surface
asymmetrv. Energy is released when symmetry is restored. These conclusions are independert of
the precise forms of H and W~.

1.0

0.2

00 0.4 0.8 1.2 1.6 2.0 24 2.8 3.2
w=W/2(E,-E)
Fig. 4. Dimensionless energy ¢ and dipole moment M plotted versus

dimensionless wall potential w. As w increases to infinity,
¢ and M, both increase and approach unity.

By combining Egs. (21) and (27) the wave tunction coefficients are calculated to be

c, - A (28a)
b 0-92(a-a2) + A2

-
o - (28b)
2 J0-02(1-A%) + A2

and are plotted as functions of w in Fig. 5 for A - 0.296.

The changing valence bond character can be inferred from this figure using simple con-
cepts of physical chem'stry The coefticient ¢ qualltan ely represents the fraction of covalent
character because y, is a symmetrical wave functlon cnaracteristic of a covalent bond. The
coefficient c2 qualitatively represents the fraction of ionic character because 3 is an asymmetru
wave function characteristic of an ionic bond. Finally, the coerficient 2Ac c, =1~ c1 —c2 quali-
tatively represents the ionic-covalent resonance contribution io the bord character.

13
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0.2

o} 0.4 08 1.2 i6 20 24 28

Fig. 5. Fractional bond character variation with wall potential.

cf = zovalent fraction.

c% = ijonic fraction.

2:](.'2_\ = resonance fraction.

These coefficients are also useful fo: calculation of the surface dipole moment.
M = eju*zids which, when expanded yields

M:e'c.;?fc;;zv,’;;d:—2ec1c2./;':lzd§d.- (29)

An explicit calculation of M can be made if the functions ¢/; an | ] are reasonably esti-
mated. One simple estimate of U, and U can be made whea H, is tak: i to be Coulombic as shown
below.

3. Application to a Coulombic Hamiltonian

Many of the results of the preceding general treatment will become clearer if a partizular
single electron Hamilwonian H is discussed in detail. For this purpose we choose a Coulombic
Hamiltonian ’

202 2 '
W, oo b2 el (30,

° Brlpx KT

where p* is an effective electron mass and « is a dielectric constant. Other Humiltonians pos-
sessing bound states would yield qualitatively similar conclusions. -

The eigenfunctions of H, + W™ in the limit of W - 0 are of the symmetric i, trpe and are
labelled :,’;nym(r,e,cs} where n, 1, and m are the usual hydrogenic quantum numbers. The spherical

14
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coordinates 1. ¢, and o are oriented sush that the vecter 0 points into the matenal and the

nlane # = 2 lics in the surface plone, Foerey foveis Foare given by
' & o $ .

[
iy

-1t

Eoo o
h.‘l\-'[l

1

(31}

vhere K is e Bohr enerpy. 13.6 ¢V Wave functions of a constant * subshell are 127 - 1)-fold
degencrate. and of a coastani n shell are 2n--feld degenerate. including spin up and down. Energy
levels with fine splitting of the degencrate levels greatly exaggerated are shown at the lefi of
Fig. 6 corresponding to ¥ 0. The three symbois labeling the levels refer te n. . and m quantum
numbers, respectively. and the notations m and m refer to plus and minus 2z components of angular
momentum.

33 T4

433, 5
432 70— —

43] _
3,0 432
la22 130+ - |,

41 422 . a2 3
-
an

410
400
32228 :

TR G — 32
- 3214 3
337 ;’?? 30
310
300
242l 210+ 2
200
n=zi

w=0 O<W <« o W=z

Fig. 6. Variation of Coulombic energy levels as the wall potential is turned on.
Degeneracy of constant n shells is greatly exaggerated to show splitting
into bonding states on the right side of the figure and antibinding states
are shown as arrows pointing to the crystal continuum,



The birding cigenfunctions of H | - %7 in the haitof W - ~ are of the asymmetric )
tvpe and are labelled 57 (roo0d). These tunctions all vanish in the negative haif plane
’ n’n

= 2 # =z where the wall 1s located. and have planar nodes at ¥z 2. The selection rule for
planar nodes 1s © - m odd. [t foliows that wave functions of a constant n shell are - -fold
degenerate, and of a constant ¢ shell are nin- 1) told degenerate, including spin-up and -down.
Energy levels with exaggerated degeneracy are shown at the right of Fig. 6. corresponding to

¥ . ~. There are. of course. an equal number of antibonding ¢igenfunctions labelled U7, (r.6.6).
but their cnergy levels hlend into the mazerial continuum and cannot be shown in Fig. 6.7

To complete Fig. €. the cigenfunctions ¢ must be selected for an arbirrary W between the
Himits of G and ~. In accordance with Eq. (16 we select a linear combinaticn of wave functions.
one from the left of Fig. 6 and ore from the right. Two plausible arguments point to a unique
selection procedure. First. the presence of W which is axially symmetric caano. perturb the quan-
tura number m. so connecting lines shouid be drawn with constant m. Second. it is most likely
that states combine which have the same number of radial nodes. Thus. connecting lines should
have constant {n - * j. Bound states are formed when © - m is odd:

,..
c.
!
N
—
-
to
=
R
-
(& 8
]
~

Using these rules. connecting lines in Fig. 6 indicate how the bound states vary in energy over
the entire range of %. The small arrows in Fig. 6 indicate that an identical number of unbound
states pass into the crystal continuum.

If this very simple scheme is observed, then all bound and unbound states are accounted
for. As far as the bound states are conce ned, the effect of the surface potential W is to increase
the quantum numbers n and - by one unit each and thus to reduce the binding energy of the ground
state and all excited states.

Hlustrations of 4 as functions of W are schematically drawn in Fig. 7 for a few of the
lowest states. At the left is the limit W = O, at the right is the limit W = =, and in the center is
an intermediate W. As W increases. the wave functions are forced into the interior of the material
with no new radial nodes arising, like an elastic jelly. The elastic jelly is, in fact, a close me-
chanical analogy. since the presence of a free surface is known to increase the free energy of the
material.

The energy and the dipole moment associated with each line in Fig. 6 for arbitrary W can
be computed from Eqs. (27) and (29), provided «, u*/p, E,, E, and A are specified. As a particu-
lar example, consider the ground state composed of the normalized wave functions

/ *
-t/ a
%o

Y100 = ‘7;“15;‘;(:5;7 (33)
0w - rcos()e-r/za‘; (34)
210 7 172 (a‘(‘))”z
where
ag - iff— (35)
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y . . - - = - . - - . c M
amd a is the first Bohr radius, 53 A0 The energy dtfference becomes (EL- E ) (3°4) ¢~ 2xac

©
and the overlap integral becomes Vv (L2000 Thes walue of A was used to construct Fig. 4.

¥ = Ci¥go* cz";to

»
¥ 7 C Y50 *Cr¥ 30

+
¥ = Cy ¥yt Cp Vi

M@@m“@@“ S
FEEEEEEEQEEE===53======55

W=0 C<Weo W=zo

Fig. 7. Variution of three wave functions as the wall potential
is turned on. Wall squeezes wave functions into the
dielectric with no new rudial nodes arising.

The above functions can also be used to explicitly calculate the dipole moment M, of the
ground state

- s S eayc,c,\ (36)
vhich can be expressed in conventional Debye units (10718 esu-cm) as

M- 5954 2.0 by 7
M, - —#— . <3 - 0.79 clc::) Debyes (37)

It is convenient to define a dimensionless ground state dipole moment, M, = M /(9 54 kp*/y
which can also be plotred in Fig. 4 as a function of dimensionless wall energv w.

Thus, the details of surface phenomena on dielectric marerials can be explicitly calculated
for ground states and also excited states without adjustable pa meters.

4. Application to Cesium on Insulators

It is of interest to usc the formalism developed here to compute the extent to which a
surface cesium atom OCCUPICS a 1s or a 2p ground state. The cri:erion for whether the cesium will
be in the 2p ground state is whether the wall potential is large compared to the binding energy.

As seen from Fig. 2, the 2p state is essentially attained when w > 2.
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To compute o for cesiem on sapphire estimate & 9 and py* 1. Then £ - 13.6-97 - u.168 eV
and E, E;4 0.042cV. The wall potential o is esseatially the clectron affinity X 21 ¢V. For
cesium on sapphire, then

9 1 4.0
T 2. (0.168 - 0.042)

so the ground state would essentially be a 2p nodal wave function with one lobe. A similar cal-
culation shows similar results for alumina and glass substrates where x  3-9. The following
calculations will therefore be based on 2p cesium wave functions for the surface ground state.

D. THEORY OF TUNNELING CONDUCTIVITY

Using the donor wave functions of Sections I-B and -C. it is possible to explicitly calcu-
late electrical conductivity. The conductive mechanism considered here is electronic tunneling
between surface donor atoms. Tunneling, hopping, and quantum mechanical resonance are all
terms that will be used interchangeably to describe the same process.

Most of the derived equations contain only fundamental constants such as Planck’s con-
stant, unit electric charge, and electron mass. Other derived equations contain material constants
such as ionic radius, interatomic spacing and atomic mass. The material constants are only nec-
essary in the caiculation of phonon energies. The approach taken here is unique in the sense that
conductivity can be theoretically calculated a priori, without referring to conductivity data. Pre-
dictions made in this theoretical section agree very well with the experimental data as shown in
later sections.

1. Tunneling Equotion

Consider a line of donors on an insulator surface as schematcally shown in Fig. 8a.
Donor wave functions are of the 2p nodal type, penetrating into the insulator.

/ION CORE
//VALENCE WAVE FUNCTION
/

VACUUM

(a) !

"“PHONON TRANSITION Ep

(d)

Fig. 8. Conduction due to a line of donor atoms on a surface.
(a) Wave functions.,
{b) Energy states as a function of poesition, Wavy lines
indicate phonon transitions which discipote electrical
. energy.



In the absence of an applied electric field electrons can freely wnnel from one donor to
another: clectronic motion is random and 1sotropic. There is no drift current.

In the presence of an applied electrie field a drift current must appear. This current is a
small perturbation added 1o the random tunneling motion. At the present time, concepts of wnnel
drift current are poorly understoed. One very simple cquation for tunnel drift current has been
derived by Arnold and Patterson. 14 but it has the conceptual weakness that it contains the thermal
energy kT. Tunnel conductivity and field emission are quantum mechanical processes which should
be temperature independent, to a first approximation. '

The purpose of the derivation w0 follow is to modify the basic idea of Arnold and Patterson
by essentially replacing kT by the iattice phonon erergy E . The derived equation is still not
rigorously true, but it has three advantages: it is very simple to apply i experimen:al data. it is
temperature independent, and it rests on a more secure foundation than the equation of Arnold and
Patterson.

To calculate the drift current between two adjacent donors in the field ditection. the foi-
lowing relationship is useful:

(drift current) = (random current) » (drift probability) (38)
The random current can be written as
(random current) = 2E /h (39)

where e is the unit electric charge. E_is the waneling energy (dependent on donor spacing) and
h is Planck’s constant. The ratio E_/h is the frequency of random tunneling.

The drift probability is a more difficult concept to apply.'4 If one recognizes that all
electrons in the drift current eventually dissipate energy, then the drift probability should nearly
equal the energy dissipation probability. so that

(drife probability) = eV, 'E_ (40)

where eV _ is the potential energy acquired between adjacent donors, and E is the phonon energy
which is responsible for encrgy dissipation in quantum processes. Arnold and Patterson (erroneously)
used kT instead of E_ in the above expression. The tenn V | is normally very small {(~ 107 V),

being equal to the applied voltage (normally ~ 1 V) divided by the number of donors in a line
(normally ~ 109). Since E_ is normally ~ 1072 eV, the drift probability is normaliy calculated to

be ~ 1071 Two important fimiting cases arise: when eV vanishes, the drift vanishes; and when

eV, equals E | each tunneling electron liberates a phonon to the substrate lattice. The production

of phonons is indicated by the wavy lines in Fig. 8b. In es<ence, the phonon transitions act as
mechanical ratchets since they restrict electrons to drift only in one direction.

By combining Eqs. (38)-(40) the interatom drift current becomes

2
. e E:Va
T ———— 4
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The interatom conductivity is then given by

g, -~ -t (42)

Note that g 1s Ohmic (i.c.. g, is independent of V). If a square lattice of donors is assumed,
then g equals the conductivity per square g . The desired relationship between the measurable
quantity g_ and the atomic parameters E and E, is therefore

it (43)
y 4
fo " ThE
P
or
g, = 0.385: 107" E /E, mhos/square (44)

It should be recognized that the hypothetical square lattice of surface donors is not related to the
substrate lattice at all; instead, the donor lattice varies continuously as the donor coverage varies.
The donor lattice merely expresses the idea that interdonor .epulsive forces are effective in es-
tablishing a more uniform distribution of donors than if the donors were in the random positions.

Explicit calculations of the tunneling and phonon energies, E_and E _, are given below.
Note that e?/h is a fundamental constant having the dimensions of conductivity.

2. Tunneling Energy

The simplest and most carefully studied system exhibiting electron tunneling'4-'5 is the
hydrogen r.olecule ion H3. The single electron can be located either about one nucleus or the
other, but because each of the locations is equally probable, the electron resonates, or tunn:ls,
between the two nuclei. The tunneling frequency v associated with the process has an associated
tunneling energy E_ given by E = hv,. For Hj, the tunneling energy (also called the exchange or
resonant energy) is given by

s f¢*(r) WL -1 43, (45)

t K T

where ¢*(r) and ¢(L -r) are 1s hydrogenic wave functions centered about locations 0 and L,
respectively. Essentially, E is the Coulomb energy e?/«r averaged over the resonant wave func-
tion probability, ¥(r) (L -r).

Amold and Patterson'4 have used Eq. (45) to successfully explain certain tunneling
phenomena in alkali-ammonia solutions. In particular, they incorporated 1s hydrogenic ground
states for the alkali atoms.

To use Eq. (45) in surface tunneling phenomena the wave functions in the ground state
must be of the 2p type. Tunneling integrals «{ two atoms with parallel 2p wave functions have
fortunately been explicitly calculated by Kopineck.'6:17 The molecular designation of the overlap
is called #-» overlap, meaning that one nodal plane passes through the two nuclei. Because of
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this nodal plane. Kopineck’s tunneling integral, which he calls J__, is identical to twice ais
integral taken over only one half-plane. But since the ground state surface wave functions have a
\ 2 normalization (Section 1-B-2), Kopineck’s J , _is fortunately equal to the surface tunneling
energy of Eq. (45). This allows Eq. (45) to be written in exparded form as

22 )
SR R [1 -3 —3;] (46)
a 2

12« %a* a
[s)

Here a is a dimensionless interdonor spacing paramerer. dependent on donor coverage. To be
precise, « is defined as

o LEt (47)

where L is the interdonor spacing, « is the dielectric constant, a_ is the first Bohr radius. and
p*/p is the ratio of effective to free electron mass.

If a square lattice of surface donors is assumed (see part 1I-D-1), then L has a simple
relationship to the donor surface coverage. The relationship follows because the density of
donors per unit surface area can be written in two ways which are equated to obtain

of - -L; (48)

r4

Here o is the surface densit?/ at one monolayer and 9 1s the fractional coverage. Equation (48)
has been quoted by deBoer, '8 Topping,'® and manv others for square adsorbate lattices; also, a
minor variation of Eq. (48) has been used by Langmuir?? for hexagonal adsorbate lattices.

The relationship between the dimensionless spacing a and the coverage 8 is obtained by
combining Egs. (47) and (48):

2
a

’ 2
1. (4oa2) &2 (#L) 9 (49)

~ If o is taken equal to 4.8 x 1014 cm™? (characteristic of cesium ac one tightly packed monolayer)?'

then the first bracketed coefficient in Eq. (49) is equal to 0.0054. Note that 6 is proportional to
-2
a .

With this information it is instructive to carefully examine the variation of tunneling energy
with coverage. To eliminate e?, «, a_, and (p*/p) from the discussion it is convenient to normalize
the tunneling energy E, by dividing it by the ionization energy E; of Eq. (10). After rearrangement
Eq. (46) becomes

8E. 12 a

E 2 -
. _ a’exp(-a) (1 i3 _a%_> (50)
1 -
The above equation is arranged with foresight such that the right-hand side is precisely Kopineck’s
tunneling integral which he tabulated from a = 0.5 to a = 7.0. We have extended the range from

a=7.0to a=12.0. It is thus possible to plot E /E; as a universal function of the dimensionless
parameter a. '
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A more conventional plot, however, can be constructed in the foliowing way recognizing
. . -9 . . . - . - .
that 6 is proportional to « . This plot is shown in_Fig. 9. Here the ordinate, E /E;, is propor-

. . « -7 . .
tional to the tunneling energy: and the abcissa, o« =, is proportionnl to the coverage of surface
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Fig. 9. Dimensionless tunneling energy versus a2, which is
proportional to coverage. The dashed line is an adequate

approximation for a large range of E /E,.

donors. The curve on this graph is universal, being independent of x and p*/p. Four conclusions
emerge from examining this plot:,

(1) E,/E,; > 1 at high coverages, indicating that there is more electron delocalization than
electron localization. Conductivity is metallic and traveling Bloch waves of the form exp(ikr)
carry electronic current. This case is not of primary interest for the discussion to follow.

(2) E/E; <1 atlow coverages, indicating thai electrons are mainly localized but that
tunneling can occur to a limited extent. Conductivity occurs by quantum mechanical hops, not by
continuous Bloch waves. The situation is analogous to tunneling conductivity in alkali-ammonia

: 14
solutions.
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(3) Near E E 1 acritical transition from metallic to tunncling conductivity should
occur. The critical spacing ratio 1s approximately

a, v 100 ' (51;

(4) In the tunneling range the dashed line is a fair approximation to the computed solid
line. The cquation for the dasked line. assuming p = p*, is

E( -4 i g2
£ = 100 @t~ 0.289 %6 (52)

: showing that E _is proportional to the coverage squared. In the very low coverage range the

: dashed line departs from the solid line. It is surprising that all data to be described in Sections

: I-F and -G seem to fit the dashed line more accurately. Reasons for this etfect are not clear. The
dashed line is extremely simple to manipulate algebraically and wili be used in the analysis to
follow.

This completes the calculation of the tunneling nergy and its dependence on coverage,
dielectric constant, and effective mass. Admittedly, many simplifications are uced in the deri-
vation. Probably the most serious omission is the neglect of many particle interactions. Never-
theless, this simplified treatment of only two body interactions is, in fact, fairly accurate as
judged by experimental data.

3. Phonon Energy
Energy introduced into a conductor by an electric {ield will eventually be dissipated
either by photons or phonons. Photon energy transitions are proportional to the cube of the tran-

sition energy, so that they are generally rare compared to low-energy phonon transitions.

Phonon energies of an isotropic solid follow the Debye distribution to a first approxi-
mation with a characteristic bulk phonon energy E,; and Debye temperature 6, related by

E, - hp (53)

where k is Bolzmann’s constant. But an adsorbed surface atom has a mean phonon energy E |
» different from that of the bulk value. This energy is given by one vibrational quantum and is
related to the vibrational frequency v by

E - hve (54)

23



A simple procedure for calculating v A for any adsorbed species on a surface has been given in
detail by the author?? and is summarized below.

Consider a cesium ion located on a sapphire surface. Sapphire is cryQtallme AL, O, con-
sisting of O ions placed on a hexagonal close-spaced lattice with AL*** ions placed in the
interstices. A cesium ion will most probably be nestled on top of three oxygen ions arranged on
vertices of an equilateral triangle as shown in Fig. 10. The cesium will undergo vitrations

Fig. 10. Pyramidal molecule consisting of one cesium ion nestled on top
of three oxygen ions. Phonons are transferred via the vertical
molecular vibrations.

perpendicular to the surface with frequency vy which will now be calculated from a harmonic
oscillaror model. The equatlon22 is

26
v, - 1 a 1 (55)
2n m Rcos BB

where ¢> is the heat of adsorptxon m is the reduced mass of the pyramldal molecule, R is the
sum of ionic radii of ce: ium and oxygen, B is half the apex angle, and s is the interoxygen spacing.
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T
o =

Typical ~alues of these parameters are

S 0.9 eV

cos B=(1 - S2/3R2)" = 0.88

s - 250A&
which gives

v, = 0.97 x 1012 sec™!
and

(56)
E, = 0.0040 eV

These results are insersitive to ¢, and mbecause of the square root dependence. In the dis-

cussion to follow, Eq. (56) will be compared with experimental data in the absencc of other in-
formation regarding the susface structure of alumina polycrystailine ceramics or glass.

4. Parametric Analysis

By combining Eqs. (44) and (46) the conductivity becomes a unique function of 6:

efaexp(-a) (. 3 3
= e S 7.
8o 12h?a¥E, Ta T aT) o7
In particular, by using the straight-line approximation of Eq. (52) and the phonon energy of
Eq. (66), one gets
g = b92
° (57b)

b - 0.0094x? mhos/square
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which is plotted on a log-log scale 1n Fig. 11 The diclectric constant « 1s a running paramcicr
allowed to vary from 1 to 100.
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Fig. 11. Parametric theoretical plot of tunneling conductivity versus
coverage for various valuves of dielectric constant. Shaded
area indicates region where data have been obtcined.

The figure consists of'a famly of straight lines, one line for each x value. The region to
the upper left bounded by a dashed iine is not applicabie since E > E; ard metallic conductivity
occurs there. The region to the right bounded by a vertical dashed line ts not applicable since the
coverage is too high, 9 > 0.1, and cooperative interadsorbate effecis tend to dominate. In partic-
ular, the heat of adsorption is expected to be constant only for § < 0.1. Data have been taken in
the shaded region of the figure.

More information regarding the range of meaningful « values can be obtained from Table 1.
Small x values, «k < 3, are questionable since the theory of nodal wave functions was based on
dieleciric constants significantly greater than unity. Large x values (x > 11) are questionable
since kT > E,, and the states are most probably thermally ionized into the conduction band

room . . .
The theory scems to apply best to intermediate x values in the range 3 < x < 11.

Another restriction is that of small overlap: The mean lateral radius 7 should be less
than one-nalf the mean lattice spacing L. With 7 defined by
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TABLE i
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| 13 i 0.020 20 410009 | 19D 159
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L - ! i ‘
—— /
7 .-fu‘ \/x3 cvT oy dr f o* G ds, (58)
/
calculation shows that
F = (15'16) wna* (59

for the 2p ground state. Values of . assuming x* - u. and the smallest meaningful internucleas
spacing L_ from Fig. 11 and Egs. (48, 19 and 51) are both shown in Table I: the small tunneling
overlap condition is indeed observed for all x considered.’

The largest allowable coverage in the valid « range varies from 0.01 < 9 < 0.1 showing
that the surface donors are indeed dilute as implicitly assumed in the derivation of wave functions
of individual adatoms. '

Finally. Tabie [ shows that in the allowed « range. wunneling conductivity should nor ex-
ceed ~107* mhos ‘square. If surface conductivity is observed greater than this theoreiical value.
then onc can infer the ¢onduction mechanism to-be metallic and rather insensitive to the concen-
tration of surface denors. The transition from tunneling ro metallic conductivity has been observec
in alkaii-ammonia solutions.4 For surface conducrivity, bulk condensation occurs before the

transition has a chanc.: to appear.'- 2

In summary. the theoretical analysis of this section shows that tunnelinng conductivity can
be explicitly caiculaied without any reference to experimental data. Tunneling conductivity occurs

. . . . - R
in dilute surface layers, # < 0.1, and it varies apnroximately as ¢-.

In dynamic equilibrium the coverage o is a function of surface and metallic vapor bath
temperatures. This funcuional dependence is derived in the following section.

E. EQUATION OF STATE

To calculate the coverage o of surface donors consider a surface at temperature T im-
mersed in a metallic vaper bath at temperature T . Provided T ~ T, dynamic equilibrium is



established and agglomeration of the adsorbate donor atoms into crystallites is thermodynamically
unstable. There will exist a two-dimensional adsorbate donor gas which is constantly agitated due

to rearrangement. adsorption. and desorption.

The equation of state relating 4 to T and T’ is extremely simple at low coverages,
¢ < 0.1. because the heat of adsorption is then largely independent? of coverage and tempera-
ture. The equation of state constructed from a rate balance 1522

-& kT

As k c-dd‘szw,U ‘v’ e (60)

(uvpoﬁe'

where o = surface statisticai weight
v = surface vibrational frequency
o = surface monolayer density

@ = surface coverage
As = surface configurational entropy
&, = surface adsorption heat

T = surface temperature
= liquid statistical weight
liquid vibrationa!l frequency
= liquid monolayer density
liquid vaporization heat
liquid temperature
Boltzmann’s constant

g T8
nowon o

]

.'r,

=
]

This equation is based on the model of a mobile two-dimensional layer with one degree of vibra-
tional freedom perpendicular to the surface. The surface statistical weight « is considered only
for the lowest electronic state of the donor atom. Departures either from the model or in the re-
striction to ground state statistical weignts will be taken up, at least approximately, in the con-
figurational entropy term As/k. Neither As/k nor ¢_ can be predicted from more fundamental
ideas at the present time. They will be inferred from experimental data later on. Close estimates

of the cther parameters22 can be made, however, and are listed below for cesium on insulators.
w=2
» Tw =1
v, =0.97 x 1012 sec’!
v’ =1.26 x 1012 sec’!
o =48x10M" cm2

0" =4.16 x 1014 cm™2
¢ =0.747 eV

On the insulator surface, cesium donor electron spins are probably uncorrelated in the dilute
case; the electronic staustical weight for the ground state is then o = 2..On the cesium liquid,
the spins are always paired so that = 1. Using these values Eq. (60) becores

6 = 0.545 e D57k /KT B kT ' , 61)

By combining this equation of state with the general conductivity relation [Eq. (57a)] the
following general theoretical predictions result:
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1. Since log 6 is a single-valued function of 1 7 and 1/T " and since g is a
single-valued function of 4. it foliows that log g.. should be a siagle-valued
function of 1 T and 1 T This dependence can be visualized most easily
by imagining a plot constructed with 1000 T as ordinate and 1000, T * as
abscissa. [t follows that on this plet lines of constanc g_ would never
intersect.

2. The slope of this plot. being defined by

4 1100¢ T)
slope =

T (1000 T
constant g..

is theoretically calculated to be & /&, and constant. provided 4 is suf-
ficiently low so that &, is coverage-and temperature-independent.

The horizontal spacing of 2_, lines differing by constant factors. say factors
of 16. wil. generally vary.

A

In summary. general considerations indicate a family of nonintersecting. parallel. and non
uniformly spaced lines of constant vonducrivity on a 1000,/ T. 1000: T * plot.

In additi~n to these general predictions. more specific predictions can be drawn if the
cenductivity can be written in the power law form

g.=boY (62)

where y is any power of 9. Then the lines of constant g will be equally spaced.

For the particular case when the straight-line approximation of Eq. (57b) is assumed,

y = 2 and lines of constant g_ such as g_ = 1074, 1073, 1076, 1077, etc., would be equally
-spaced 2 » 0.745/5.05 = 0.295 anits apart on the herizontal axis 1000/T " The conductivity
can then be written in closed form as

g, - 502 = 0.297 be~2_Xs k e-Zg’; kT eZ'.”)a kT (6%)

To compare theory with experimental data ic is convenient to use .he Archenius form

B
T

(64

4

=il

Log g 8n= 4~

where
A =-0.52 + Log,, b-0.85 As/k
B =2x5050x¢ = 7550 (65]
JC=2x5050 x ¢_ =10, 100 ¢

The theoretical constant B is rigidly fixed, while the constants A and C contain the
corfigurational entropy and heat of desorption, respectively, which will be inferred by comparis
with data taken under *'clean’’ experimental conditions. ,
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If the effect of contaminants would be merely to alter y. then an Arrhenius equation
would still occur, but with A, B, and C values diffcrent from Eq. (65). The slopes B/C of the
g, line famiiy would. however, be unaltered and the fine spacings would still be uniform.

Analysis of the Arrhentus squations provides a very sensitive probe to determine the
extent of adsorbatc and contaminant gas interaction. Data reported below will serve to display
various predicted effects occurring under *‘clean’ and '‘unclean’’ conditions.

F. ELECTRICAL CONDUCTIVITY CAUSED BY ADSORBED CESIUM ON INSULATOR SURFACES*

ABSTRACT

Electrical conductivity caused by adsorbed cesium on various insulator surfaces has been
measured extensively. The insulators used were high alumina **Diamonite’” ceramic, high -lumina
**Frenchtown’’ ceramic. and pure crystalline sapphire; the surface temperatures varied in tie range
300°K < T < 600°K; the cesium vapor bath temperatures varied in the range 300°K < T "< 560 'K;
and data were taken both with and without a continuously purifying cesium still and getter ic2
pump. It was found thac:

1. The conductivity per square, g, is surprisingly reproducible and identical
for all high alumina substrates, provided either vapor contaminants are con-
tinuously gettered or an isolated system is in early stages of life, and foi-
lows a semiempirical law over many orders of magnitude

Log,,28,=A- T—d + ——C{ (mho) (66)

where A = -5.4, B = 7520, and C = 8340.

2. For isolated systems in later stages of life where unknown contaminant
gases accumulated, the conductivity is again reproducible but higher with
entirely different values of A = —4.5, B = 2400, and C = 2700.

These data may be applied to choosing insulators for thesmionic energy converters and
associated test devices.

- G. COMPARISON OF THEORY WITH EXPERIMENT

Experimental data of electrical conductivity caused by adsorbed cesium on insulators has
already accumulated (see Section I-F and References !-3). It is necessary first to present the
data in a compact form so that it can be neatly compared with theory.

The conductivity of cesium on all "*clean’” alumina (including sapphire) systems follows -
the theoretical Arrhenius relationship [Eq. (64)] with A, B, and C values given by2

A=-54
B = 7520 Yclean’” alumina (67)
C = 8340

* This work was reported in its entirety in the Proceedings of the Thermionic Specialist Conference, Cleveland,
Chio, October 1964, and is summarized here.
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The data are shown in Fig. 12. *'Clcan® conditions are Jdefined as continuously gettered sys-
tems at low temperatures and in inttal stages of life.
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Fig. 12. Master plot of constant conductivity versus reciprocal bath and surface
temperatures, taken under **clean’’ conditions. Data refer to Diamonite
ceromic, Frenchtown ceramic, and sapphire. Lines follow semiempircal
Arrhenius formula. 7

Blackford? reported conductivity data for cesium on *‘clean’” Pyrex glass suifaces. His
data yielded

=-6.6
7520 “‘clean’’ Pyrex {68)
8340 .

O w >
[

as shown in Fig. 13.

Finally, for *"unclean’ alumina systems the Arrhenius parameters representing the data
y

became?2

A--45 , 7
B = 2400 "*unclean’ alumina (69)
C = 2700

The data are shown in Fig. 14. ""Unclean’ conditions are defined as pinched off and nongettered
systems where residual gases have a chance to accumulate.
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Fig. 14.

semiempirical line formula 15 similar to that of cesium on
ceramic unde: **clean’’ condi‘ions.
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Master plot of constant conductivity versus reciprocai bath and surface
temperatures, taken under *unclean’’ conditions.
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The transition between "clean” and “unclean’ alumina systems was followed after a
getter Jon pump was pinched off. There 15 a gradual transition such that A, B, and C values
slowly change from Eq. (67) to Eq. (69). After about onc week of constant testing a final equilib-
rium 1s attained which allowed the determination of Eq. (69).

Let us now interprer all the data in terms of the theoretical predictions set forth in

Section §-E.

The tact that the data alwavs follow Arrhenius conductivity relatonships indicates that:

(a) Conductivity follows a power law of coverage given by
g. - bo¥ 70

(b) Liue slopes are identical.

{c) The observed conductivity is not a sum of partial conductivities
because the Arrhenius relationship is inconsistent with a sum
of cffects.

(d) The conduction mechanisms on glass and ciystalline sapphire
are similar. confirming the prediction of surface electron tunnel-
ing proposed in Section I-D.

The fact that for clean systems the theoretical B value {7520) and the experimental B
values exactly agree shows that the conductivity is proportional to the coverage squared as
theoretically anticipated.

For unclean systems the experimental B value is 1/3 of the theoretical value; this in-
dicates that the contaminant causes the . onductivity to vary as the coverage to the two-thirds
power. The contaminant gas. most probably hydrogen.? is deduced to aid the tunneling between
cesium atoms and to increase the conductivity. Possibly the hydrogen acts as a bridge for the
cesium-cesium tunneling process.

For clean systems. comparison between theoretical and experimental © values shows that
b, =083 eV {71)

which is 0.08 eV higher than the vaporization heat of bulk cesium (¢ "= 0.75 eV). An independent
check of ¢, was made in the tollowing simple cxperiment.* A mass of fine alumina powder was
painted on one electrode in an evacuated glass tube containing liquid cesium droplets. At constant
temperarure it was discovered that the droplets spontaneously became smaller, and the cesium
gradually appeared in the alumina powder as judged from its color progression: white to blue to
black. As soon as the powder \as warmed to about 100°C. however, the cesium departed the
powder and became redeposited in liquid droplets on the glass walls. The observed 100°C tem-
perature difference required to reversibly transport cesium from the powder to the droplets in-
dicates that ¢_ and ¢~ are fairly close. The observed facr that at constant temperature. cesium
prefers the adsorbed state to the cesium droplet state indicates that o, is slightly greater than
% ’. Thus, this experiment helps to verify the calculated ¢, value deduced above. For both clean
and unclean systems the ratio B/C is constant, indicaring that ¢ -is constant and unperturbed
by contaminants. .

K. G. Hernqvist, RCA Laboratorics, unpubhished data.
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For clean alumina the theoretical A value can be calculated provided «. u*/u, and
As/k are known. Inserting reasonable values of « = 9 and p*/p = 1 inte Eq. (65) yields
A = - 0.64 - 0.87 As/k. By comparing this with the experimental A value of - 5.4, the con-
figurational entropy change is calculated to be

:\S//l( = 3.5 (72)
Similarly, assuming « = 5 and p*/pu = | for clean Pyrex one obtains
As/k = 6.2 (73)

As/k values are dependent on the adsorptxon model as well as the parameters « and y*/y. Their
large magnitudes indicate?? a reduction in translational freedom, possibly arising from an order-
ing due to dipole-dipole repulsions. This interpretation is in agreement with the long-range order-
ing observed in many low-energy elec:ron diffraction(LEED)experiments. It also follows that if a
fixed, long-range order is assumed, then As/k should be fixed, and the absolute value of A should
increase with decreased dielectric constant [see Eqs. (65) and (57b)]. This theoretically predicted
trend has indeed been observed experimenrally: for alumina, x =9 and A = - 5.4; and for Pyrex,
k=95 and A = - 6.6.

H. CONCLUSIONS DRAWN FROM CESIUM ADSORPTION ON INSULATORS

Starting from fundamental quantum mechanical concepts, it has been possible to theoret-
ically derive wave functions, donor ionization energies, tunneling energies, conductivity relation-
ships, and equations of state, all in excellent agreement with the extensive experimental data
taken to date.

Some ot the highlights of this effort are:

1. The ground state wave function of a cesium atom on a dielectric surface
consists of one lobe of a 2p hydrogenic wave function penetrating deep
into the dielectric.

.- General .ules for selecting surface wave functions of all excited states
and arbitrary surface asymmetry have been derived.

3. Cesium-cesium interactions are explicitly calculated using Kopineck’s

resonuance integral between nelghbormg wave functions.

4. Conductivity proceeds via cesium-cesium electron tunneling and the
conductivity relatlonshrp is derived in terms of Kopineck’s integral and
the surface phonon transitions which supply the conductlvuy loss
m=2chanism.

5. Phonon energies are expliciily calculated from the vibrational motion
of surface atoms.

6. The conductivity varies as the cesium coverage squared, to a first
approximation.

7. An equation of state is derived showing the linear dependence of
coverage and arrival rate for the low coverage system of interest.

The conductivity is then predicted to be proportional to the cesium
pressure squared. This prediction has been accurately verified ex-
perimentally.

D
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9.

10.

11.

By comparing other aspects of theory and experimental data. the heat and
entropy change of adsorption have been unambiguousiy calculated. For all
clean alumina and glass subsrrates ¢ 0.85 €V and 5.5« As/k - 6.2.

The large \s/k values indicate that there is long-range order either caused
by dipole-dipole repulsions of surface cesium atoms or by the extended p or
d wave functions characteristic of high dielectric materials. A similar long-
range order has been observed in LFED studies.

For surfaces probably contaminated with hydrogen, conductivity increases
above the nonhydrogenated case; the hydroge, probably forms conductivity
bridges between nearly cesium atoms. The heat of adsorption is unchanged
from & = 0.85 eV, showing that the contaminant affects the conducrivity
but not the binding energy of cestum.

The Arrhenius form of experimental data is convenient for calculating cesium
conductivity in various thermionic energy converters and related test apparatus.
Sophisticated means have been developed for analyzing the Arrhenius co-
efficients with and without contaminants. This represents an important tool

in understanding the complex system of two adsorbates present on one sub-
strate.
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Il. WORK FUNCTION STUDIES
by

J. R. Fendley, Jr.

A. CESIUM REFERENCE ANODES*

Cooling of an anode ‘o0 a temperature slightl, above the bulk condersation temperature
allows one to attain a readily reproducible anode work function nearly equal to that of bulk
cesium. There remains some doubt about the actual value of this work function, but it is sub-
stantially higher than the widely quoted value of 1.81 V. A value of ¢ __ - 1.96 V is presenily
recommended.

The cesium reference anode technique was applied to measurement of cesium arc drop.
Values of arc drop near 0.5 V were found for a rather wide range of cathode temperature, cesium
pressure, and spacing virlation.

B. A CESIUM BEAM METHOD FOR WORK FUNCTION MEASUREMENT
1. Introduction

Several methods have been used for measuring the work fro . tion of metal surfaces coated
with an adsorbed layer of cesium. The classic low-current thermionic emission method is exem-
plified by the work of Taylor and Langmuir.?4 In this method, guard rings setve to define the
cathode area and minimize the effect of envelope insulator leakage currents. The Marchuk plasma
anode technique is another thermioaic emission method, which has been employed by Houston. 25
With the presence of ions, this method permits usc of larger current density to minimize leakage
problems. The work of Kitrilakis, Shavit, aud Rasor?¢ employed a retarding potential electron
collection method.

All three methods mentioned are steady-state equilibrium methods, in which the envelope
insulators are subject to the same cesium flux as is incident upon the sample under investigation.
A cesium beam technique has been devised which eliminates insulator leakage problems by shad-
ov.ng these insulators with cold trap surfaces. The simplest molecular beam techniques?’ suffice
to form a beam of neutral cesium. If desired, beam techniques would also permit controlled intro-
duction of oxygen or other significant gases onto a sample of interest.

2. Details of the Beam Method

A sample under investigation is the target of a flux of neutral cesium and electrons, which
pass through the shutter plane of a beam apparatus. The a;paratus is shown schematically in
Fig. 15. Prior to opening the shutter, the target is cleaned by heating to a sufficiently high tem-
perature. When the shutter-is opened, cesium coverage of rlie sample increases and the work func-
tion changes, resulting in an equal change of terminal potential. The raw data are a plot of terminal

'This paper is published in its entirety in Proceedings of the 7 hermionic Conversion Specialist Conference, Cleveland,
Ohio, October, 1964, p. 71, and is summarized here.
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Fig. 15. Beam apparatus for work function measurements.

potential vs. time after shurter opening. The constant current generator and electronic voltmeter
are both provided by a single Keithley Model 600 (or similar) electrometer, switched to the OHMS
position. Such an instrument has a recorder output proportional to the terminal voltage.

The apparatus is calibrated by vse of the cesium reference anode technique.28 This
technique eliminates the need for accu~i-.e knowledge of cathode temperarure, radi.l current dis-
tribution, and space charge effects. When a sutficiently thick film of cesium has collected on the
target, the work function is presumed?8 to be 1.96 + .03 V.

3. Experimental Results

: A preliminary experiment was performed, using apparatus similar to that shown in Fig. 15.
; Terminal voltage vs. time curves were recorded. Target current of 107® A and cesium arrival rate
of about 1012 cm™2 sec'! were found to be convenient. Leakage current was less than 107194, a
negligible value. The cathode used was a hollow cathode similar to that described by Eichenbaum.
Electrons were accelerated to about 300 V, and then decelerated in the vicinity of the target. Part
of the target was shadowed, due to poor alignment of the accelerator electrode with respect to the
cathode aperture. This misalignment is thought to be the reason for a failure to observe the ex-
pected minima in the terminal voltage vs. time curves. Since a good signal-to-noise ratio was ob-
taincd with a target current of only 10°% A, a very simple directly heated tungsten wire cathode
should suffice to provide this much current.

29

Another result of the p .liminary experiment was realization of the importance of conven-
ient cycling of the target temperature, preferably withour significant change in the target-cathode
spacing.

In summary, the transient method described here is recommended for obtaining work func-

tion vs. coverage data. There are no leakage problems and other gases such as oxygen may be
introduced along with the cesium-electron flux.
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HI. REVERSE CURRENTS !N THERMIONIC CONVERTERS*
by

K. G. Herngvist

A gencral analysis is presented of reverse-current effects which are of importance in
cesium arc mode thermionic energy conyerters

Two rypes of reverse-current phenomena are considered. namely: electron fiow from rhe
plasma back to the cathode and electron emission from the anode into the plasma. The first
phcnomernon has two effects: (1} Evaporation cooling of the plasma results in a contribution to
the arc drop which may be of the order 0f 0.1 V. (2) The fully saturated emission current is
generaily not reached in the power-producing quadrant.

The back emission frem the anode has little effect on the net curreat, but cools the
plasma which resules in an incceased arc drop. As a consequence. an optimum anode work func-
tion exists for a specific anode temperature.

The effects of reverse currents on the relatiouship between arc drop and pressure-distance
product are discussed.

This material has been published in its entirety in the Proceedings of the Thermionic Conversion Specialist Con-
ference, Cleveland, Ohio, Ociober, 1964, pages 320-325, and is summarized here.
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CONCLUSIONS AND RECOMMENDATIONS

The xork descubed 1n this rerort has mmrrovad the fundamental understanding of the use
i !
of cosum ir themmionic converters both tor spave charge neutsalization and for electrode surface

condittoning.

New techniques for evaluating the clectrode work Joections of operating converters have
been developed, allowing an accurate determination of the a-c dron. The theory of the low-voitage
cesium are has been refined taking 1nto account ¢tfects previously neglected. Together. these
studies point to the unavordabihity of an are drop of about half a volt. No ebvious directions of

improsvment using a modified geometiv or introduction of gas additives have been established.

I the arca of ciectrode surface properties theoretical device limits have not vet been
achieved. The achievement of lower work functions will fead ro device improvement. particularly
in the are 1 of collector properties. Further advances. however, necessitate adding another con-
stitucat o the cesium on mezal syistem presently used. The work on adserption of cesium on in-
sulators described in this report has provided fundamental knowledge of value for an understand-
ing of the more complicated system using two adgsorbates tor clectrode surface conditioning. [t
is recommended rhat further theeretical and experimental staies be made on such a system. The
theoretical approaches described in this report should be extended to metals with the aid of
Wannicr functions. Experimental studies using beam techniques shouid be applied to the two-
adsorbate system.

In summary. the fellowing conciusions and recommendations are made based on the work
described in this report:

1. An arc drop of about '» volt seems unavoidable for the present
form of thermionic converters. No obvicus ways to improving
this requirement without decreasing device reliability have
been established.

2. Lowering of c¢lectrode surface work functions is possible and
will lcad to device improvement. Further studies of the two-
adsorbate system are recommended.
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